PHYSICAL CHEMISTRY

(C) 1-b, 2-d, 3-a, 4-c

DPP No. 41

Total Marks: 29

Max. Time: 30 min.

Topic: Chemical Equilibrium

Type of Questions

Single choice Objective ('-1' negative marking) Q.1, 2, Q.4 to Q.8 (3 marks, 3 min.)

Subjective Questions ('-1' negative marking) Q.3 (4 marks, 5 min.)

Multiple choice objective ('-1' negative marking) Q.9 (4 marks, 4 min.)

1. For A (g) \rightleftharpoons 2B (g), equilibrium constant at total equilibrium pressure p_1 is K_{p_1} & for C (g) \rightleftharpoons D

- 1. For A (g) \rightleftharpoons 2 B (g), equilibrium constant at total equilibrium pressure p_1 is K_{p_1} & for C (g) \rightleftharpoons C (g) + E (g), equilibrium constant at total equilibrium pressure p_2 is K_{p_2} . If degree of dissociation of A & C are same, then the ratio p_1/p_2 , if $K_{p_1} = 2$ K_{p_2} , is :

 (A) 1/2 (B) 1/3 (C) 1/4 (D) 2
- 2. Match the following: (Take reactants to be in stoichiometric proportions in case of two reactants)

Reaction Degree of dissociation of reactant in terms (Homogeneous gaseous phase) of equilibrium constant $(\sqrt{\kappa})/(1+\sqrt{\kappa})$ A + B ⇒ 2 C (a) 2 A ⇒ B + C $(\sqrt{K})/(2+\sqrt{K})$ 2. (b) $A + B \Longrightarrow C + D$ 2 K / (1 + 2K)3. (c) $AB \Longrightarrow \frac{1}{2}A_2 + \frac{1}{2}B_2$ (d) (A) 1-d, 2-c, 3-b, 4-a (B) 1-a, 2-c, 3-b, 4-d

3. 0.96 g of HI were heated to attain equilibrium 2HI (g) \rightleftharpoons H₂ (g) + I₂ (g). The equilibrium mixture, on reaction requires 15 mL of M/10 Hypo (Na₂S₂O₃) solution. Calculate the degree of dissociation of HI. I₂ + Na₂S₂O₃ \longrightarrow Na₂S₄O₆ + NaI (unbalanced)

(D) 1-b, 2-a, 3-d, 4-c

- In an evacuated closed isolated chamber at 227°C, 0.02 mole PCI_5 and 0.01 mole CI_2 are mixed and $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ equilibrium is attained. At equilibrium, density of mixture was 2.4 g/L and pressure was 1 atm . The number of total moles at equilibrium will be approximately : (A) 0.012 (B) 0.022 (C) 0.032 (D) 0.0488
- 5. For $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ reaction started only with $NH_4HS(s)$, the observed pressure for reaction mixture in equilibrium is 1.12 atm at 106°C. What is the value of K_p for the reaction?
- 6. For the reaction : $CaCO_3$ (s) \rightleftharpoons $CaO(s) + <math>CO_2$ (g), $K_p = 1$ atm at $727^{\circ}C$. If 20 g of $CaCO_3$ were kept in a 10 litre vessel at $727^{\circ}C$, then the percentage of $CaCO_3$ remaining at equilibrium is : (A) 40% (B) 60% (C) 46% (D) 66%
- 7. 200 g of CaCO₃(s) are taken in a 4 L container at a certain temperature. K_c for the dissociation of CaCO₃ at this temperature is found to be 1/4 mole L⁻¹. Then, the concentration of CaO in mole/litre is : [Given ρ_{CaO} = 1.12 g cm⁻³]

 (A) 1/2 (B) 1/4 (C) 0.02 (D) 20
- 8. The exothermic formation of NH_3 is represented by the equation : $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Which of the following will increase the quantity of NH_3 in an equilibrium mixture of N_2 , H_2 and NH_3 : (A) Increasing the temperature (B) Increasing the volume of container (C) Removing N_2 (D) Adding H_2
- 9.* When AgNO₃ is heated mildly in a closed vessel, oxygen is liberated and AgNO₂ is left behind. At equilibrium according to reaction AgNO₃ (s) \Longrightarrow AgNO₂ (s) + $\frac{1}{2}$ O₂ (g) :

 (A) addition of AgNO₂ favours reverse reaction
 (C) increasing temperature favours forward reaction
 (D) increasing pressure favours reverse reaction

Answer Kev

DPP No. #41

1.

(A)

2.

(C)

3.

0.2.

4. (D)

5. 0.3136 atm²

6.

(A)

7.

(D)

8. (D) 9.*

(C,D)

ints & Soluti

DPP No. # 41

3. 0.2.

4.

 $PCI_5 \rightleftharpoons PCI_3 + CI_2$

0.02-x

X 0.01+x

 $D = \frac{PM}{PT}$

Calculate M_{avg}.

$$\frac{(0.02-x)208.5+137.5x+(0.01+x)71}{0.03+x} = M_{avg}.$$

 $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ P
P

5.

2P = 1.12P = 0.56

$$K_p = P^2 = (0.56)^2 = 0.3136 \text{ atm}^2$$

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ 6. 0.2-x

 $K_p = P_{CO_2} = 1$

$$x = mole of CO_2 = \frac{PV}{RT}$$

Remaining mass of $CaCO_3 = (0.2 - x) 100 g$.

7. [CaO] =
$$\frac{\rho_{CaO(s)}}{M_{CaO(s)}} = \frac{1.12}{56} \times 1000$$

9.* Addition of solids have no effect on equilibrium and temperature favours endothermic direction while increasing pressure will shift equilibrium in backward direction as $\Delta n_{_{\! q}}$ is +ve.

